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Abstract. Endoscopy is the foundation for the diagnosis and treatment
of several gastrointestinal ailments. However, it is an operator-dependent
procedure. The quality of assessment of endoscopy images relies on the
physician’s experience, ability, and conditions. A system capable of au-
tomatically evaluate endoscopy images and classify different gastroin-
testinal findings within them is an alternative to enhance the diagno-
sis quality. Convolutional neural networks (CNN) show great promise
to this end. Research on this topic focuses on the generation of new
complex architectures. Several publications have stated their concerns
about the capability of these state-of-the-art schemes to be deployed
in a clinical setting. Mainly due to the uncertainty to employ them in
real-time because of the computing power these algorithms need. In this
study, we performed hyperparameter optimization during the transfer
learning and fine-tuning process using off-the-shelf CNN (more likely to
operate in real-time) for the image classification task. To this purpose,
we use an evolutionary algorithm. We provide preliminary results to this
method, proving that this approach may reach classification performance
competitive with the novel deep learning structures while maintaining
low complexity in the architecture.

Keywords: Hyperparameter optimization, evolutionary algorithm, med-
ical images, gastrointestinal tract, deep learning.

1 Introduction

In recent years, research on automatic medical image classification has gained
significant importance. The implementation of Artificial Intelligence (AI) in
medicine has been successful in image-intensive specialties, such as radiology,
pathology, ophthalmology, and cardiology [22]. Several publications have re-
ported the current state and expectations of such tools in the area of gastroen-
terology, in particular for endoscopy [1,3,6,8,23]. Endoscopy is the foundation
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for the diagnosis and treatment of diseases of the gastrointestinal (GI) tract.
This procedure is operator-dependent, which generates substantial interobserver
variation in the detection and assessment of GI findings [19]. So, the detection
of GI lesions essentially relies on the expertise of the physician [28].

An automated system capable of classifying different GI findings would help
to reduce the variation in endoscopists’ performance [19]. The development
of computer-aided diagnosis (CAD) systems with this purpose is currently an
open challenge since the feasibility, effectiveness, and safety of CAD for up-
per gastrointestinal endoscopy in clinical practice remain unknown [23]. There
are different approaches for classifying endoscopic images. Deep learning (DL)
techniques usually outperform strategies that use hand-crafted features [23,28].
Consequently, convolutional neural networks (CNN) are the most employed
method nowadays.

The majority of research focuses on proposing new architectures or combining
existing frameworks to enhance classification/detection performance. However,
the systems must allow operating in real-time to achieve the final goal, which is
assistance in real-time during endoscopy [1,8,16,23]. Numerous state-of-the-art
architectures run too slow to be implemented in a clinical setting [19]. Therefore,
optimizing the performance of off-the-shelf architectures (that may allow real-
time operation) is a possible solution to this.

We utilize less complex deep architectures to classify endoscopic images of the
KVASIR dataset [24]. We implement transfer learning in different off-the-shelf
CNN. Formerly, we aim to optimize hyperparameters to improve the classifica-
tion performance of the algorithms. Borgli et al. [5] presented a similar scheme,
yet, they carried out Bayesian optimization. In contrast, we propose to use an
evolutionary algorithm for this purpose.

2 Related Work

Several studies are using Al to analyze endoscopic images. A great deal of these
focuses on a specific GI finding, such as polyp detection and segmentation (e.g.,
[26]), gastric cancer detection and diagnosis (e.g., [20]), diagnosis and detection
of Helicobacter Pylori infection (e.g., [30]), among others. The publication in
2017 of the KVASIR dataset [24], consisting of 8000 images of different GI
findings in images of upper endoscopy, made possible the development of a new
generation of algorithms for endoscopic image classification. These studies aim
to achieve a general classification of the different GI findings that can appear
during endoscopy instead of concentrating on a particular suffering or symptom.

2.1 Dataset
Machine learning (ML) and DL schemes need datasets to be developed, vali-

dated, tested, and compared. With this in mind, Pogolerov et al. [24] created
and published the KVASIR dataset. The original version of this dataset consists
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of 8000 images from inside the GI tract. This dataset contains anatomical land-
marks, pathological findings, procedures, and normal findings. In concrete, the
images belong to one of the following classes: z-line, pylorus, cecum, esophagitis,
polyps, ulcerative colitis, dyed lifted polyps, dyed resection margin, normal colon
mucosa, and stool. Each class has 1000 images of it. Hence, the dataset is
balanced.

2.2 Evaluation Metrics

There exist standard evaluation metrics used to assess classification algorithms.
We take the performance measures from [16]. Since it is the most complete and
recent paper describing and comparing the performance of different methods for
automatic endoscopic image classification. The evaluation metrics are as follows:
recall (REC), specificity (SPEC), accuracy (ACC), precision (PREC), Matthews
correlation coefficient (MCC), and F; value (F1):

TP
REC = 55 7N (1)

TN
SPEC = 7 (2)

TP
PREC = 7p——p. (3)
ACC - TP+TN @

TP+ FP+TN + FN’
(TP xTN)— (FP x FN)

MCC = , (5)
V(TP +FN)(TN + FP)(TP + FP)(TN + FN)
PREC x REC
Fl =2 X s REC T REC (©)

In the above, TP, TN, FP and, FN stand for true positive, true negative,
false positive and, false negative, respectively.

2.3 Classification algorithms

To compare and measure the performance of the proposed method, in this inves-
tigation, we only consider studies that use one version of the KVASIR dataset
for training, validation, and testing. Table 1 shows the studies that use some
version of the KVASIR dataset and have the best classification performance.
During the last years, different paradigms for the classification of endoscopic
images came to be tested. CNN architectures are the current most effective
approach. Regarding classification performance, hybrid architectures have gained
notice. Chang et al. [7] denoted the importance of applying an adequate data
augmentation technique. In [7], they developed an algorithm to automatically
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Table 1. Studies with the best evaluation metrics for endoscopic image classification
using some version of the KVASIR dataset. Metrics as presented in [16].

Autor Architecture MCC| ACC| F1
Chang et al., 2019 [7] ResNet34 [10] + 0.9520(0.9946|0.9569
SE-ReNext [14] +
Attention-inception-v3 [27]

Harzing et al., 2019 [9] MobileNetV2 [25] 0.9490(0.9936(0.9105

Luo et al., 2019 [21] 10 CNN + 0.9480(0.9941]0.9533
Light GBM [17]

Hoang et al., 2019 [13] ResNet-101 [10] + 0.9406(0.9933(0.9464
Faster R-CNN

Hoang et al., 2018 [12] ResNet-101 [10] + 0.9398(0.9932(0.9342

Faster R-CNN
Thambawita et al., 2018 [29] ResNet-152 [10] + 0.9397|0.9932|0.9297
DenseNet-161 [15] + MP
Hicks et al., 2018 [11] DenseNet-169 [15] 0.9325(0.9924|0.9236

select the data augmentation technique based on the F1 value of a rapid train-
ing in 20 groups of randomly selected test samples. For the classification of
endoscopic images, they developed a CNN architecture consisting of a reduced
version of residual neural network (ResNet34 [10] combined with SE-ReNext [14]
and Attention -inception-v3 [27]. The addition of the attention blocks aimed for
these to learn the differences between classes. This study introduced multi-epoch
fusion, which consists of using the average of the weights of the last 5 training
epochs to improve the model generalization and avoid parametric overfitting.

Chang et al. [7] designed their architecture to carry out multi-label classifi-
cation. So, they realized a threshold selection of belongings to each label. They
tested different threshold combinations for each label and selected the one that
had the best performance. This work was the best evaluated for classification
task in the Biomedia ACM MM Grand Challenge 2019 [16], where they reached
an MCC of 0.9520.

Harzig et al. [9], used 2 CNNs for image classification, and although they
used data augmentation techniques, their results were affected by the imbalance
in the training samples [9]. In this study, the authors focused on making a fast
classification, and not only accurate. Consequently, they used smaller CNNs that
can run even on mobile devices. With MobileNetV2 [25] they achieved an MCC
of 0.95974 in the KVASIR database [9] with an inference time that suggests that
this algorithm could be implemented in real-time.

An interesting idea to combine different CNNs in a single model is that
proposed by Luo et al. [21], they individually tested some state-of-the-art CNNs
and selected the 10 with the best classification results for the KVASIR database.
Subsequently, they trained 10 sub-models for each of the selected CNNs using
cross-validation with the training data. Then, they used the output as a vector
of probabilities of membership to each class of the trained submodels as a set
of characteristics to train ML systems for classification. Their best MCC was
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0.948035, and they obtained it with a LightGBM [17] classifier.

Hoang et al. [13] proposed and applied a data augmentation technique, which
consists of cropping the region of interest for classification and adding this region
of the image to others in the same database. These authors implemented a
residual neural network in conjunction with a Faster R-CNN. The goal of using
these 2 neural networks working together is that ResNet CNN carries out the
classification work and, the detection network serves to reiterate the class. With
this methodology, the authors achieved an MCC of up to 0.9406 for classification
in the Biomedia ACM MM Grand Challenge 2019 test database [16,7].

In [29], Thambawita et al. studied different pre-trained models and com-
binations of these. They concluded that the combination of ResNet-152 and
DenseNet-161 to extract image features, with a multi-layer perceptron for the
classification lead to the best performance. With this approach, they got an
MCC of 0.9397 in the 2018 Medico Classification task.

Hicks et al. [11] conjectured that pre-training the models with a medical
dataset could enhance the models’ performance. However, they discovered that
vast and diverse datasets were better to pre-train, even if they were not similar
to the final dataset. These authors reached an MCC of 0.9325 in the 2018 Medico
Classification task using DenseNet-169.

2.4 Hyperparameter Optimization

In the previous subsection, we presented several studies concerning endoscopic
image classification. In concrete, all of these works use a version of the KVASIR
dataset. It is important to denote that every one of the presented studies used
transfer learning to adapt the employed model to the target domain. During
transfer learning, there are some hyperparameters to tune. These are capable
of enhancing or worsen the model’s performance. Despite the importance of the
hyperparameter, these are usually manually tuned.

The only precedent that currently exists in the literature regarding the
automatic tuning of hyperparameters to optimize the classification performance
of endoscopic images is the research of Borgli et al. [5]. In this study, they used
a Bayesian optimization approach achieving an improvement of up to 10% in
terms of accuracy with other works that used the same CNNs for classification
in the KVASIR database by adjusting the hyperparameters manually.

Borgli et al. [5] considered 4 hyperparameters: The pre-trained model, the
gradient descent optimizing function, the learning rate and, the delimiting layer.
The pre-trained model refers to the kind of architecture that is used to clas-
sify the images. They used KERAS to train the models, so the architectures
and gradient descent optimizing function that they used during the optimiza-
tion process were the ones available in this API. The architectures prospects
were: Xception, VGG16, VGG19, ResNet50, InceptionV3, InceptionRes- NetV2,
DenseNet121, DenseNet169, and DenseNet201. The gradient descent optimizing
function prospects were SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax,
and Nadam. The learning rate was set in a continuous value between 1 and 10~%.
Finally, the delimiting layer refers to the number of layers that are trained in
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the model. This value was set between 0 and the number of layers in the selected
model.

3 Methods and Implementation

3.1 Evolutionary Algorithm

Evolutive algorithms use the paradigm of evolution proposed by Darwin, in
which the fundamental law is the principle of variation and selection. This princi-
ple of changing each generation (through reproduction) is the main component of
the evolutionary strategies [4]. Evolutionary algorithms are based on the collective
learning process within a population of individuals, each of which represents a
search point in the space of potential solutions to a given problem. Back, 1993
[2].

In evolutionary algorithms, several individuals explore the solution space of
the environment at random points. Then, the best-evaluated individuals pass
their genes (information) to the next generation. Evaluation is the procedure of
assessing how well the solutions fit the established goals. The genes of the selected
individuals are preserved and mixed in new individuals with recombination
mechanisms. Also, it is a good practice to consider a mutation factor during
this procedure. The mutation is the introduction of random information, which
introduces innovation into the population [2]. Fig. 1 shows a general overview of
an evolutionary algorithm.

Initial population
Properties encoded into
“genes”

!

—_— Evaluation

Individual's fithess

}

Selection
Select individuals that will
preserve their genes

}

Reproduction
Generate a offspring of
the selected individuals

Fig. 1. General evolutionary algorithm.
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We considered the whole population for the selection process. We use tour-
nament selection, in which the algorithm takes n individuals randomly from the
population, compares them, and selects the individual with the best evaluation.
The algorithm repeats this process until it reaches the desired total number of
selected individuals. All the individuals have the same chance to participate in
the tournament. Nevertheless, the individuals with the highest evaluations are
more likely to win the match and preserve their genes.

There are different mechanisms for the generation of new individuals. Overall,
this procedure consists of the information (genes) combination of the selected
individuals and a mutation factor to introduce novel information into the popu-
lation. There exist different combination mechanisms, such as recombination
(generate a new individual mixing up the parents’ genes), raw combination
(generate new genes by blending the parents’ genes), etc. The combination
mechanisms could be static or dynamic. The same happens with the mutation
factor. Fig. 2 shows an example of the different combination techniques and the
mutation procedure.

During this work, we use a static combination method without recombi-
nation. We use the arithmetic mean of the parents’ genes as the combination
method. We considered a mutation factor as an independent variable for every
gen for every individual. Table 2 shows a pseudocode representation of the
evolutionary algorithms that we use during the experiments presented in this
study.

Recombination Blending
Parents Parents
Offspring Offspring

If mutation present If mutation present
Mutation Mutation
Mutated offspring Mutated offspring

Fig. 2. Generation mechanisms of evolutive algorithms.

3.2 Data

The KVASIR dataset [24] has 8000 labeled images, 1000 for each class. We split
these images into three subsets for training, validation, and testing, each with
4000, 2400, and 1600 images, respectively.
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Table 2. Pseudocode representation of the evolutive algorithm.

1) Random generation of initial population of size M.

2) While condition of conclusion is not satisfied.

3) Evaluation of the population.

4)  Selection of the N individuals for the crossover.

5)  Generation of a new population of size M with the crossover of the N
selected individuals.

6) End.

We used data augmentation techniques. In every training iteration, the train-
ing images went through a transformation step, where they are randomly rotated
at an angle between 1° and 355°. Also, a horizontal flip, vertical flip, and
brightness adjustment are applied to every image, with a 50% probability for
every transformation.

3.3 Experiments Settings

The experiments were carried out using the following hardware specifications:
AMD Ryzen 5 3400G CPU, one NVIDIA GeForce GTX 1660 Ti GPU, 16 GB
RAM, and 476 GB system memory. All the algorithms were implemented in
Python 3.8.5, using the environment Spyder 4.1.5. Pytorch 1.7.1 was used to
obtain the pretrained CNNs architectures and gradient descent optimization for
training, which was Adam algorithm [18].

We included four hyperparameters in the optimization algorithm during the
transfer learning: kind of CNN architecture, learning rate, delimiting layer, and
training epochs. The gene representing the kind of CNN architecture takes dis-
crete values, one for each architecture available, which were: AlexNet, ResNet-18,
ResNet-34, Resnet50, SqueezeNet-1.1, DenseNet-121, DenseNet-169, MobileNet-
v2, ShuffleNet-v2-x0.5, and ResNext-50-32x4d. The other three genes take con-
tinuous values. For the learning rate, we established bounds between 10~* and
10=5. The bounds of the delimiting layer depended on the selected architecture.
The lower bound represents that the last half of the layers are fine-tuned, and
the upper bound represents that the training only affects the classification layers.
For the training epochs gen, we set the bounds between 5 and 15.

The maximization of the validation accuracy was the optimization target for
the evolutionary algorithm. During the generation process, the genes had a prob-
ability of crossover (with arithmetic mean) of 50%, except the CNN architecture,
which automatically inherited the gene of the best-evaluated parent. The learn-
ing rate, delimiting layer, and training epochs genes had a mutation probability
of 15%, and the CNN architecture a probability of 25%. The population during
the optimization consisted of 20 individuals. The evolutionary algorithm had 5
generations in total since the experiment goal was to prove that this kind of
optimization is effective for this task.
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4 Results

The best-evaluated individual of the initial population (0-generation) had a
validation accuracy of 0.8995, and the best-evaluated individual of the fifth
generation has a validation accuracy of 0.9821. Table 3 shows the characteristics
of the best-evaluated individual of each generation in detail.

Table 3. Best evaluated individuals per generation.

Gene-|Learning|  Architecture Layers |Epochs|Validation|Validation|Validation
ration| rate pretrained |Epochs Acc MCC F1
0 [8.888 % [ShuffleNet-v2-x0.5] 0.9341 11 0.9718 0.8709 0.8870
1 [1.8927% |ResNext-50-32x4d| 0.6615 12 0.9786 0.9023 0.9145
2 [1.89271% ResNet-18 0.9587 12 0.9769 0.8942 0.9075
3 [2.2097% |[ResNext-50-32x4d| 0.6950 11 0.9783 0.9006 0.9130
4 [3.2317*| MobileNet-v2 0.8870 11 0.9804 0.9103 0.9215
5 [2.3067° ResNet-50 0.9101 11 0.9821 0.9183 0.9285
.. 0.985 0.935
£ 0.982 g 092
i 0.979 E 0.905
£ 0976 E 089
% 0.973 S 0875
~ 097 0.86
0 1 2 3 a 5 0 1 2 3 a 5
Generation Generation

Fig. 3. Validation accuracy (left) and MCC (right) of the best-evaluated individuals
per generation.

5 Conclusions

The experiment results imply that an evolutionary strategy can improve the
accuracy of an endoscopy image classification algorithm. The results presented
are evidence that this kind of optimization paradigm can lead to classification
performance comparable to that of the best-evaluated architectures since the val-
idation accuracy, MCC, and F1 value reached during the experiment are similar
to those presented in table 1. Nevertheless, the objective of the experiment was
to demonstrate that optimization of hyperparameter using a genetic algorithm is
capable of improving the classification performance of off-the-shelf architectures.
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The results presented are enough to prove it, considering that we got a rising of
0.0474% in the validation MCC in 5 optimization steps using only 20 individuals
and basic generation mechanisms.

An inconvenience of using evolutionary strategies is that this kind of opti-
mization algorithms usually needs several individuals. In computationally ex-
pensive tasks (such as this), it can take too long to reach the optimal solution.
A possible solution to this issue is using surrogate models.

During the experiment, we only considered four genes (CNN architecture,
learning rate, delimiting layer, and training epochs), and we set the bounds of
the searching space based on the literature. In the future, we can extend the
number of genes by including other hyperparameters, and we can refine the
bounds of the searching space by carrying out a characterization of the solution
space of the optimization problem.

Also, in this work, we set as optimization target the maximization of the
validation accuracy. In future research, we can implement multi-objective opti-
mization. For example, we can set as optimization target the maximization of
other evaluation metrics, such as the MCC value, along with the minimization
of the training time.
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